Dissociation of State-Selected NO_2^+ Ions Studied by Threshold Photoelectron–Photoion Coincidence Techniques[†]

Kazuhiko Shibuya*

Department of Chemistry, Tokyo Institute of Technology, Ohokayama, Meguro, Tokyo 152, Japan

Shinzo Suzuki

Department of Chemistry, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 159-03, Japan

Takashi Imamura

The National Institute for Environmental Studies, Tsukuba, Ibaraki 305, Japan

Inosuke Koyano

Department of Material Science, Himeji Institute of Technology, Kamigori, Hyogo 678-12, Japan Received: July 9, 1996; In Final Form: September 30, 1996[®]

Fragmentation patterns and dissociation rates of state-selected NO₂⁺ ions were measured by the threshold photoelectron-photoion coincidence (TPEPICO) method in the region of 40–100 nm. Parent NO₂⁺ ions were detected when they were prepared in the excited states located above the first dissociation limit ($D_0^0 = 2.79 \text{ eV}$), correlating to NO⁺(X¹\Sigma⁺) + O(³P). Specially, the dissociation rate (k_{dis}) of NO₂⁺ ions in the lowest excited \tilde{a}^3B_2 state increases with increasing the quantum number of the bending vibration (n_2): (7.4 ± 4.9) × 10², (1.32 ± 0.56) × 10³, (1.51 ± 0.40) × 10⁴, and (2.38 ± 0.51) × 10⁴ s⁻¹ for $n_2 = 0$, 1, 2, and 3, respectively. The branching ratios of two dissociation pathways, NO⁺ + O and O⁺ + NO, were found to depend on the electronic state of the parent ion. The unimolecular dissociation channels are discussed in terms of dissociation potential surfaces open for individual electronic states and radiative relaxation to lower electronic states.

I. Introduction

The photochemistry^{1–3} and spectroscopy^{4,5} of NO₂ have been well studied. The excited states of NO₂ couple with each other strongly through vibronic and spin—orbit interactions. As a consequence of the strong coupling network, the photoexcited NO₂ lying above the first dissociation limit (25 129 cm⁻¹, 397.9 nm) predissociates very rapidly. The longest dissociative lifetime is 42 ps, which was measured for \tilde{D}^2B_2 (0,0,0). The excited state lying 10 cm⁻¹ above the first dissociation limit has a short lifetime of 6 ps. The lifetimes become shorter as the excitation energies increase. On the other hand, the photochemistry and spectroscopy of NO₂⁺ have not been studied yet.

The equilibrium bond angles of NO₂ and NO₂⁺ in their ground electronic states are quite different: 134° for NO₂ and 180° for NO₂⁺. This has long been a baffle for the accurate determination of the adiabatic ionization potential (IP) of NO2 and the experimental investigation on the chemistry and spectroscopy of NO₂⁺. Grant and his co-workers have determined the adiabatic IP (77 316 cm⁻¹, 129.340 nm) with the multiphoton ionization method of NO₂ via linear Rydberg states.⁶ In singlephoton-ionization spectroscopy, the Franck-Condon principle leads to the generation of vibrationally excited NO₂⁺ ions alone in the ground state. On the other hand, the ejection of an inner valence electron from NO2 is Franck-Condon favored due to the geometrical similarity between the ground-state NO₂ and the inner valence hole NO_2^+ . Therefore, one can prepare electronically-excited and state-selected NO2⁺ ions by photoionization in the spectral region shorter than 100 nm.

In the present study, this technique has been used to investigate the dissociation mechanisms of the state-selected NO_2^+ ions. We have measured the threshold electron spectrum (TES) of NO₂, the photoionization efficiency (PIE) curves of its parent and fragment ions, and the threshold photoelectron—ion coincidence spectra in the 50–100-nm range using the TEPSICO⁷ and TEPSICO-II⁸ apparatus.

II. Experimental Section

The apparatus used were TEPSICO and TEPSICO-II, which have been described in detail elsewhere.^{7,8} The procedures were the same as those employed in the previous studies of stateselected ion/molecule reactions7 except that the reactant gas was not introduced into the reaction chamber. The NO₂ molecules were ionized in the ionization chamber by monochromatic vacuum UV radiation from the He Hopfield continuum dispersed by a 1-m Seya-Namioka monochromator (0.05-nm FWHM in the case of TEPSICO) or from synchrotron radiation at the UVSOR facility dispersed by a 3-m normal incidence monochromator (0.02-nm FWHM in the case of TEPSICO-II). The photoelectrons and ions were extracted from the ionization chamber/region by a weak electric field in the direction perpendicular to the photon beam and opposite to each other. The threshold photoelectrons were selected by a non-line-ofsight steradiancy analyzer9 and allowed to pass to a channel multiplier. The ions were mass analyzed by a quadrupole mass spectrometer and detected by another channel multiplier. These ion signals were then counted in coincidence with the threshold electron signals, thus yielding direct information on the relative abundance of the parent and all fragment ions for various specified internal energies of the parent ions.

 $^{^\}dagger$ The experimental work was performed at Institute for Molecular Science, Okazaki, Japan.

[®] Abstract published in Advance ACS Abstracts, December 15, 1996.

Figure 1. Photoionization efficiency curves and threshold photoelectron spectrum of NO₂ in the range of 40-80 nm. Photoinoization efficiency curves are for (a) NO₂⁺, (b) NO⁺, and (c) O⁺. The assignments of

threshold photoelectron spectrum d are taken from ref 10.

III. Results

A. Photoionization Efficiency Curves and Threshold Electron Spectrum. Figure 1 presents three photoionization efficiency curves (a–c) and a threshold photoelectron spectrum (d) of NO₂ in the region of 40–80 nm, which were measured using the TEPSICO-II. The threshold electron spectrum is in accordance with the He I (21.21-eV) and He II (40.82-eV) photoelectron spectra reported by Brundle et al.¹⁰ They assigned the photoelectron spectra based on the SCF calculation of NO₂ and NO₂⁺, as well as on the comparison with the ionization potentials of CO₂, which is isoelectronic with NO₂⁺. The ground electronic configurations of linear CO₂ and bent NO₂ are presented below:

$$CO_{2}\tilde{X}^{1}\Sigma_{g}^{+}: \cdots (\sigma_{g})^{2}(\sigma_{u})^{2} (\pi_{u})^{4} (\pi_{g})^{4}$$
$$NO_{2}\tilde{X}^{2}A_{1}: \cdots (4a_{1})^{2}(3b_{2})^{2} (1b_{1})^{2}(5a_{1})^{2} (1a_{2})^{2}(4b_{2})^{2} (6a_{1})$$

Statistically, ionizations of NO₂ \tilde{X}^2 A₁ to the triplet states of NO₂⁺ should be 3 times as intense as those to the corresponding singlet ionic states.¹¹ The triplet states of NO₂⁺ are mainly recognized in Figure 1d. According to the assignments by Brundle et al.,¹⁰ the triplet states of NO₂⁺ prepared by photoionization in the spectral region of 50–100 nm are listed in Table 1. More accurate energy calculation of NO₂ at the equilibrium geometry of the ground state has been carried out by Handy et al.,¹² but they did not report on NO₂⁺. We, therefore, accept the assignments by Brundle et al.,¹⁰ which have since been confirmed to be correct by Kimura et al.¹³

In spectrum d, one can recognize three strong bands corresponding to the generation of NO₂⁺: c^3A_1 , \tilde{e}^3B_2 , and \tilde{f}^3A_1 . The 1100-cm⁻¹ progression due to the N–O stretch in \tilde{e}^3B_2 is seen around 65 nm: The 0–0 band of NO₂⁺ \tilde{e}^3B_2 –NO₂ \tilde{X}^2A_1

TABLE 1: Summary of the Triplet States of NO_2^+ and Their Adiabatic Ionization Potentials

elec state	adiabatic IP, eV	wavelength, nm
$\tilde{a}^{3}B_{2}(4b_{2})^{-1}$	12.85	96.5
$\tilde{b}^{3}A_{2}(1a_{2})^{-1}$	13.60	91.2
$\tilde{c}^{3}A_{1}(5a_{1})^{-1}$	16.99	73.0
$\tilde{d}^{3}B_{1}(1b_{1})^{-1}$	17.06	72.7
$\tilde{e}^{3}B_{2}(3b_{2})^{-1}$	18.86	65.7
$\tilde{f}^{3}A_{1}(4a_{1})^{-1}$	21.26	58.3

Figure 2. Time-of-flight TEPICO spectra of (a) NO₂⁺, (b) NO⁺, and (c) O⁺ ions generated through the $\tilde{e}^3B_2(0,0,0)$ state of NO₂⁺, where NO₂ was photoionized at 65.7 nm.

corresponds to a band at 65.7 nm. The bond angle of NO₂⁺ \tilde{e}^{3} B₂ is close to that of NO₂ \tilde{X}^{2} A₁ (134°), and the spectrum does not show the vibrational structure. A similar 1100-cm⁻¹ progression of NO₂⁺ \tilde{c}^{3} A₁, which is accompanied by a weak progression of \tilde{d}^{3} B₁, is seen around 70 nm: The 0–0 band of NO₂⁺ \tilde{c}^{3} A₁–NO₂ \tilde{X}^{2} A₁ is located at 73.0 nm. The NO₂⁺ \tilde{f}^{3} A₁–NO₂ \tilde{X}^{2} A₁ transition seen at 58 nm does not have any obvious vibrational structure.

The photoionization efficiency curves for the parent NO₂⁺ and fragment NO⁺ and O⁺ ions are displayed as spectra a, b, and c, respectively, in Figure 1. Similar photoionization efficiency curves of NO₂⁺ have been obtained by Weissler et al.¹⁴ and Dibeler et al.¹⁵ The O⁺ production (threshold wavelength = 70.1 nm) was observed in the region shorter than 65 nm, which is in accord with the location of NO₂⁺ $\tilde{e}^{3}B_{2}$. The NO⁺ and NO₂⁺ productions (threshold wavelengths = 100.2 and 129.3 nm, respectively) are recognized over the whole spectral region of Figure 1. The distinct NO⁺ and NO₂⁺ productions via the $\tilde{c}^{3}A_{1}$ state are evident.

B. Threshold Electron–Photoion Coincidence. Figure 2 shows the TOF coincidence spectra obtained with excitation at 65.7 nm, corresponding to the preparation of NO₂⁺ $\tilde{e}^{3}B_{2}$ - $(n_1,n_2,n_3) = (0,0,0)$, where n_1 , n_2 , and n_3 are the vibrational quantum numbers of symmetric stretch, bend, and asymmetric stretch of NO₂⁺, respectively. The NO⁺ and O⁺ ions are

TABLE 2: Branching Ratios of Ionic Products Generated from State-Selected NO_2^+

ionization wavelength, nm	ionic state	ionic products ^a		
		(1) NO_2^+	(2) NO ⁺	(3) O ⁺
96.5	$\tilde{a}^{3}B_{2}(000)$	0.96 ± 0.43^b	0.04 ± 0.02^b	n.d. ^c
95.9	$\tilde{a}^{3}B_{2}(010)$	0.93 ± 0.31^b	0.07 ± 0.02^b	n.d. ^c
95.3	$\tilde{a}^{3}B_{2}(020)$	0.44 ± 0.15^{b}	0.57 ± 0.10^b	n.d. ^c
94.7	$\tilde{a}^{3}B_{2}(030)$	0.27 ± 0.08^b	0.73 ± 0.18^{b}	n.d. ^c
71.5	$\tilde{c}^{3}A_{1}(200)$	0.38 ± 0.07^d	0.62 ± 0.06^d	n.d. ^c
65.7	$\tilde{e}^{3}B_{2}(000)$	n.d. ^c	0.60 ± 0.07	0.40 ± 0.05
65.3	$\tilde{e}^{3}B_{2}(100)$	n.d. ^c	0.65 ± 0.06	0.35 ± 0.04
58.3	$\tilde{f}^{3}A_{1}$	n.d. ^c	0.86 ± 0.10	0.14 ± 0.03

^{*a*} The energetical threshold wavelengths are (1) 129 nm for NO₂⁺, (2) 100 nm for NO⁺, and (3) 70 nm for O⁺. ^{*b*} Time-of-flight of NO₂⁺ was 55 μ s. ^{*c*} Not detected. ^{*d*} Time-of-flight of NO₂⁺ was 65 μ s.

Figure 3. Time-of-flight TEPICO spectra of (a) NO_2^+ and (b) NO^+ ions generated through the $\tilde{a}^3B_2(0,2,0)$ state of NO_2^+ , where NO_2 was photoionized at 95.3 nm.

definitely generated via NO₂⁺ $\tilde{e}^{3}B_{2}(0,0,0)$ as recognized in the coincidence spectra b and c, while the NO₂⁺ ion was not detected in spectrum a. The branching ratio of NO⁺, [NO⁺]/([NO⁺] + [O⁺]), was obtained to be 0.60. Table 2 lists the branching ratios of three product ions, which are normalized to unity of the total ion yield ([NO₂⁺] + [NO⁺] + [O⁺] = 1).

From the measurements at 58.3 nm, corresponding to the preparation of NO₂⁺ \tilde{f}^3 A₁, the branching ratio of NO⁺ was obtained to be 0.86, which is 43% larger than the ratio derived for NO₂⁺ \tilde{e}^3 B₂(0,0,0).

In the spectral region longer than 70 nm, the O⁺ ions are not generated for energetical reasons. In the measurements at 71.5 nm, corresponding to the preparation of NO₂⁺ \tilde{c}^3 A₁(2,0,0), only NO₂⁺ and NO⁺ ions are generated: The branching ratio of NO⁺, [NO⁺]/([NO⁺] + [NO₂⁺]), was 0.62 under the flight time of NO₂⁺ = 65 μ s.

Figure 3 shows the TOF coincidence spectra obtained with the excitation at 95.3 nm, corresponding to the preparation of NO₂⁺ $\tilde{a}^{3}B_{2}(0,2,0)$. The branching ratio of NO⁺ was 0.57 under the flight time of NO₂⁺ = 55 μ s. The ratio varies monotonously from 0.04 at (0,0,0) to 0.73 at (0,3,0) as listed in Table 2 which implies the apparent dependence of the ratio on the vibrational quantum number, n_{2} .

IV. Discussion

The NO₂⁺ $\tilde{X}^1\Sigma_g^+$ -NO₂ \tilde{X}^2A_1 transition band has a Franck-Condon maximum at 110 nm, and the photoionization of NO₂, process 1, occurs mainly by a light of $\lambda = 100-120$ nm.⁶ The

$$\mathrm{NO}_2 + h\nu \rightarrow \mathrm{NO}_2^+ \tilde{X}^1 \Sigma_{\mathrm{g}}^+ + \mathrm{e}^- \quad \lambda \le 129.3 \,\mathrm{nm} \quad (1)$$

 NO_2^+ ions prepared in this way are vibrationally hot, especially in the bending mode. The possible processes of the dissociative photoionization are summarized as processes 2–5. We detected

$$NO_2 + h\nu \rightarrow NO^+(X^1\Sigma^+) + O(^3P) + e^- \quad \lambda \le 100.2 \text{ nm}$$
(2)

$$NO_2 + h\nu \rightarrow O_2^{+}(X^2\Pi_g) + N(^4S) + e^- \quad \lambda \le 74.8 \text{ nm}$$
(3)

$$NO_2 + h\nu \rightarrow O^+(^4S) + NO(X^2\Pi) + e^- \qquad \lambda \le 70.1 \text{ nm}$$
(4)

$$NO_2 + h\nu \rightarrow N^+(^{3}P) + O_2(X^{3}\Sigma_g^{-}) + e^{-} \quad \lambda \le 65.2 \text{ nm}$$
(5)

ion signals of NO₂⁺, NO⁺, and O⁺ but could not measure those of O₂⁺ and N⁺ in the present experiment by the photoionization of NO₂ in the range of 50–100 nm. Processes 3 and 5 are not important. Dibeler et al. measured the relative intensities of NO₂⁺, NO⁺, O⁺, and N⁺ ions with photoionization at 58.4 nm to be 0.49, 1.0, 0.18, and 0.003, respectively.¹⁴ In fact, the N⁺ signal is 2 orders of magnitude weaker than the other ion signals. Process 3 has not yet been measured experimentally. In the following sections, we discuss processes 2 and 4.

The ground state of NO₂⁺ is $\tilde{X}^{1}\Sigma_{g}^{+}$ (or ¹A₁), having a linear geometry and an electron configuration of $\cdots 4(\sigma_g)^2(3\sigma_u)^2(1\pi_u)^4$ - $(1\pi_{\rm g})^4$, which is the same configuration as that of CO₂ $\tilde{X}^1\Sigma_{\rm g}^+$. The dissociation energy (D_0^0) of O–NO⁺ is 2.79 eV. The first excited triplet state of NO₂⁺ is $\tilde{a}^{3}B_{2}$, which is bent ($\theta = 120^{\circ}$)¹⁰ and lies 3.21 eV above $\tilde{X}^1\Sigma_g^+$. Therefore, NO₂⁺ \tilde{a}^3B_2 is energetically possible to decompose into NO⁺(X¹ Σ ⁺) and O(³P). Actually, we observed the dissociation product NO⁺ as can be recognized in Figure 3, where the coincidence signals of NO_2^+ and NO⁺ were generated through NO₂⁺ $\tilde{a}^{3}B_{2}(0,2,0)$ prepared with the photoionization of NO₂ at 95.3 nm. In this spectral region, the formation of NO₂⁺ in the vibrationally-excited $\tilde{X}^{1}\Sigma_{g}^{+}$ through process 1 is negligible due to the Franck-Condon principle.⁶ One can recognize that the NO⁺ signal peaking at 44 μ s is broader than the NO₂⁺ signal. This observation originates from the fact that NO₂⁺ $\tilde{a}^{3}B_{2}(0,2,0)$ decomposes through process 2 during the flight time of 55 μ s. Assuming single-exponential decay and neglecting the phosphorescing decay NO₂⁺ $\tilde{a}^{3}B_{2} \rightarrow \tilde{X}^{1}\Sigma_{g}^{+}$, the unimolecular dissociation rate $(k_{\rm dis})$ is estimated by

$$k_{\rm dis} = \frac{1}{\rm TOF} \ln \left(1 + \frac{\rm NO^+ \, signal}{\rm NO_2^+ \, signal} \right) \tag{6}$$

where TOF is 55 μ s. For example, the k_{dis} value of NO₂⁺ $\tilde{a}^{3}B_{2}$ -(0,2,0) is calculated to be $(1.51 \pm 0.40) \times 10^{4} \text{ s}^{-1}$, corresponding to a lifetime (τ) of 66 μ s. In the same way, the dissociation rates and lifetimes of NO₂⁺ $\tilde{a}^{3}B_{2}(0,n_{2},0)$ are obtained as summarized in Table 3. The dissociation rates are also plotted as a function of the n_{2} quantum number in Figure 4. We have no available data on the phosphorescence decay of NO₂⁺ $\tilde{a}^{3}B_{2}$ $\rightarrow \tilde{X}^{1}\Sigma_{g}^{+}$, but the $\tilde{a}^{3}B_{2} \rightarrow \tilde{X}^{1}\Sigma_{g}^{+}$ phosphorescence lifetime of isoelectronic CO₂ is reported as 570 ms, ¹⁶ which is 500 times longer than the longest dissociation lifetime (1.35 ms). Thus,

TABLE 3: Coincidence Signals, Dissociation Rates, and Lifetimes of NO₂⁺ $\tilde{a}^{3}B_{2}(0,n_{2},0)$

Figure 4. Dissociative decay rate (k_{dis}) of NO₂⁺ in the \tilde{a}^3B_2 state as a function of quantum numbers of the bending vibration.

one can safely neglect the radiative decay of NO₂⁺ $\tilde{a}^{3}B_{2}$. By measuring the relative intensities of metastable NO₂⁺ signals in the photoionization efficiency curves of NO₂, Chupka estimated the dissociation lifetimes of NO₂⁺ $\tilde{a}^{3}B_{2}(0,n_{2},0)$ as follows:¹⁷ $\tau \ge 150 \,\mu s$ for $n_{2} = 0$, $\tau = 55 \,\mu s$ for $n_{2} = 1$, $\tau = 15 \,\mu s$ for $n_{2} = 2$, $\tau \le 5 \,\mu s$ for $n_{2} = 3$. Chupka's lifetime values are 1 order of magnitude shorter than ours but almost parallel ours. We believe that the coincidence experiment gives more accurate lifetime values, because the photoelectron-photoion coincidence techniques are assured to detect the fragment ion signals originating with NO₂⁺ $\tilde{a}^{3}B_{2}(0,n_{2},0)$.

An important question to be addressed, then, is why NO_2^+ $\tilde{a}^{3}B_{2}$ dissociates into NO⁺ and O(³P) so slowly (at rates of 7 × $10^2 - 2 \times 10^4 \text{ s}^{-1}$). The $\tilde{a}^3 B_2(0,0,0)$ state lies 0.47 eV above the dissociation limit of NO⁺(X¹ Σ ⁺) + O(³P), which correlates with three triplet states of NO_2^+ , including ${}^{3}B_2$. Eland proposed a tunneling mechanism in which NO₂⁺ $\tilde{a}^{3}B_{2}$ predissociates through a barrier formed by an avoided crossing of the NO₂⁺ $\tilde{a}^{3}B_{2}$ potential and a repulsive ${}^{3}B_{2}$ surface correlating with NO⁺- $(X^{1}\Sigma^{+}) + O({}^{3}P).{}^{18}$ This mechanism deserves attention, because the tunneling of the oxygen atom, an atom heavier than hydrogen, is not well-known. The slow dissociation processes of the state-selected excited molecule proceeding at rates of 10³ s^{-1} have seldom been reported and may be interpreted in terms of classical tunneling. Therefore, we tried to analyze the dissociation rate by fitting the classical tunneling formula of a parabolic barrier¹²

$$k_{\rm dis} = \nu \, \exp\left\{-\beta \left(1 - \frac{W}{E}\right)\right\} \tag{7}$$

$$\beta = \frac{\pi \alpha}{\hbar} \sqrt{2\mu E} \tag{8}$$

where ν is the vibrational frequency, α thickness of the barrier

(HWHM), μ reduced mass, *E* barrier height, and *W* vibrational energy. As recognized in Figure 4, the dissociation rate might depend exponentially on the vibrational energy. From eq 7,

$$\ln k_{\rm dis} = \ln \nu - \beta + \left(\frac{\beta}{E}\right) W \quad \text{for } W < E \tag{9}$$

is derived and $k_{\text{dis}} = \nu$ for W > E. Assuming a tunneling model, the slope of the data plotted in Figure 4 gives the β/E value of 1.78×10^{-3} cm. On the other hand,

$$\frac{\beta}{E} = \frac{\pi\alpha}{\hbar} \sqrt{\frac{2\mu}{E}} = 0.025 \frac{\alpha/\text{pm}}{\sqrt{E/\text{cm}^{-1}}} \text{ cm}$$
(10)

is calculated by simply introducing the necessary constants. By combining the experimentally obtained ratio of $\beta/E = 1.78 \times 10^{-3}$ cm and eq 10,

$$\sqrt{E/cm^{-1}} = 13.8(\alpha/pm)$$
 (11)

is obtained as a relation between barrier height and thickness. If the top of the barrier is assumed to be at the $\tilde{a}^{3}B_{2}(0,4,0)$ level, or $E = 2925 \text{ cm}^{-1}$, the thickness of the barrier (α) and vibrational frequency (ν) are calculated to be 4 pm and 10⁵ s⁻¹, respectively. These values are abnormally small and not reasonable. Even if one adjusts the vibrational frequency to be 10^{13} s^{-1} , the other parameters become $E = 7300 \text{ cm}^{-1}$ and $\alpha = 6 \text{ pm}$, which are again not reasonable as a tunneling barrier. Thus, we conclude that the simple classical tunneling mechanism cannot explain a variation in the slow dissociation rate of NO₂⁺ $\tilde{a}^{3}B_{2}(0,n_{2},0)$.

There are no available data to be compared with our present results on the dissociation of state-selected NO₂⁺ $\tilde{a}^{3}B_{2}(0,n_{2},0)$. A more accurate theoretical analysis will be required to understand the slow and n_2 -dependent dissociation rate. An alternative dissociation route might be expressed as NO₂⁺ $\tilde{a}^{3}B_{2}$ \rightarrow NO₂⁺ $\tilde{X}^{1}\Sigma_{g}^{+} \rightarrow$ NO⁺(X¹\Sigma⁺) + O(³P), which assumes intermediacy of vibrationally-excited NO₂⁺ $\tilde{X}^{1}\Sigma_{g}^{+}$ and may explain the slow dissociation rates. This intersystem crossing mechanism is, however, not likely judging from the fact that the phosphorescence lifetime of isoelectronic CO₂ \tilde{a}^3B_2 (570 ms)¹⁶ is 500 times longer than the longest dissociation lifetime of NO₂⁺ $\tilde{a}^{3}B_{2}$ (1.35 ms). The photodissociation of isoelectronic CO₂ has been reported by a few research groups. Slanger and Black determined the quantum yield of oxygen atom to be unity in the photolysis of CO₂ at 147.0 and 130.2-130.6 nm.¹⁹ The yields of $O(^{1}D)$ and $O(^{3}P)$ are 0.94 and 0.06, respectively, with the irradiation at 157 nm.²⁰ The dissociation dynamics on the ¹B₂ surface are discussed by Miller et al. from their experiment on the product-state distribution of CO₂.²¹ However, the photodissociation of triplet CO2 has not been studied so for due to the extremely weak absorption of the singlet-triplet transition.

The third excited triplet state of NO₂⁺, \tilde{c}^3A_1 , lies 0.26 eV above the dissociation limit of O⁺(⁴S) + NO(X²II). However, we could not detect coincidence signals of O⁺ with the photoionization of NO₂ to NO₂⁺ \tilde{c}^3A_1 . This is reasonable considering the fact that a ³A₁ surface does not arise from O⁺- Dissociation of State-Selected NO₂⁺ Ions

 (^{4}S) + NO(X² Π). On the other hand, we detected the coincidence ion signals of parent NO₂⁺ ions in addition to those of the fragment NO⁺. It is surprising to detect the parent ions of NO₂⁺ after such a long flight time as 65 μ s, because the $\tilde{c}^{3}A_{1}$ state lies 4.61 eV above the first dissociation limit of NO⁺- $(X^{1}\Sigma^{+}) + O({}^{3}P)$. Taking an example of neutral NO₂, the longest-lived excited state among those existing above the first dissociation limit is $\tilde{D}^2 B_2$ with a lifetime of 42 ps. How can $NO_2^+ \tilde{c}^3 A_1$ be alive as long as 65 μ s? A clue to answer this question seems to exist in the magnitude of the dissociation lifetime of 67 μ s, which is calculated by applying eq 6 to the data obtained for NO₂⁺ $\tilde{c}^{3}A_{1}(0,2,0)$. In the coincidence TOF spectrum, the width of the fragment NO⁺ peak is broader than that of the parent NO_2^+ peak. This is essentially the same observation as in the TOF spectrum at 95.3 nm, shown in Figure 3. More surprisingly, the dissociation lifetime of $\tilde{c}^{3}A_{1}(0,2,0)$ agrees well with that of $\tilde{a}^{3}B_{2}(0,2,0)$, 66 μ s. On the basis of these observations, we propose a radiative relaxation mechanism to explain the long lifetime of NO₂⁺ $\tilde{c}^{3}A_{1}$. The fluorescing transition of $\tilde{c}^3 A_1 (5a_1)^{-1} \rightarrow \tilde{a}^3 B_2 (4b_2)^{-1}$ is symmetry-allowed, while the $\tilde{c}^3 A_1 (5a_1)^{-1} \rightarrow \tilde{b}^3 A_2 (1a_2)^{-1}$ transition is symmetryforbidden. From the Franck-Condon consideration,

NO₂⁺
$$\tilde{c}^{3}$$
A₁ (2,0,0) →
NO₂⁺ \tilde{a}^{3} B₂ (*n*₁,2,0) + *hv*_f (~300 nm) (12)

is expected to take place efficiently. The n_1 quantum numbers might spread over 1–3. Although we do not know the exact value of the transition moment for the radiative process (12), this radiative relaxation process seems to be responsible for the long lifetime of NO₂⁺ measured with the photoionization of NO₂ at 71.5 nm. Another factor that we must consider as a source of this metastablity is that NO₂⁺ \tilde{c}^3 A₁ is free from any perturbation from repulsive potentials. Two repulsive triplet potentials, correlating with O₂⁺(X²Π_g) + N(⁴S), are expected to cross the \tilde{c}^3 A₁ surface, but they do not belong to ³A₁.

The fifth and sixth excited triplet states, $\tilde{e}^{3}B_{2}$ and $\tilde{f}^{3}A_{1}$, have fairly large amounts of electronic energies of 9.27 and 11.67 eV, respectively. Both processes of NO⁺ + O and O⁺ + NO take place. Specially, the $\tilde{e}^{3}B_{2}$ state is perturbed by a repulsive ³B₂ surface correlating with O⁺(⁴S) + NO(X²\Pi). This must be the reason why 40% of NO₂⁺ prepared in \tilde{e}^3B_2 dissociations into O⁺ and NO.

Acknowledgment. We are grateful to Dr. Shinichi Nagaoka for his help in a part of this experiment. K. S. thanks the Institute for Molecular Science for providing an opportunity to work at the UVSOR facility and for financial support.

References and Notes

(1) Miyawaki, J.; Yamanouchi, K.; Tsuchiya, S. Chem. Phys. Lett. 1991, 180, 287.

(2) Buttnhoff, T. J.; Rohlfing, Eric A. J. Chem. Phys. 1993, 98, 5469.
(3) Ionov, S. I.; Brucker, G. A.; Jaques, C.; Chen, Y.; Wittig, C. J. Chem. Phys. 1993, 99, 3420.

(4) Georges, R.; Delon, A.; Jost, R. J. Chem. Phys. 1995, 103, 1732.

(5) Aoki, K.; Hoshina, K.; Shibuya, K. J. Chem. Phys. 1996, 105, 2228.
(6) Bryant, G. P.; Jiang, Y.; Martin, M.; Grant, E. R. J. Chem. Phys. 1994, 101, 7199.

(7) Koyano, I.; Tanaka, K. J. Chem. Phys. 1980, 72, 4858.

(8) Koyano, I.; Tanaka, K.; Kato, T.; Suzuki, S.; Ishiguro, E. Nuclear Instruments and Methods. *Phys. Res.* **1986**, *A246*, 507.

(9) Tanaka, K.; Kato, T.; Koyano, I. J. Chem. Phys. 1986, 84, 750.
(10) Brundle, C. R.; Neumann, D.; Price, W. C.; Evans, D.; Potts, A. W.; Streets, D. G. J. Chem. Phys. 1970, 53, 705.

(11) Price, W. C. In *Molecular Spectroscopy*; Hepple, P., Ed.; Elsevier: New York, 1968; Vol. 4, p 221.

(12) Handy, N. C.; Goddard, J. D.; Schaefer, H. F., III. J. Chem. Phys. 1979, 71, 426.

(13) Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S. Handbook of He I Photoelectron Spectra of Fundamental Organic Molecules; Japan Scientific Society: Tokyo, 1980.

(14) Weissler, G. L.; Samson, J. A. R.; Ogawa, M.; Cook, G. R. J. Opt. Soc. Am. 1959, 49, 338.

(15) Dibeler, V. H.; Walker, J. A.; Liston, S. K. J. Res. NBS-Phys. Chem. 1967, 71A, 371.

(16) Mohammed, H. H.; Fournier, J.; Denson, J.; Vermeil, C. Chem. Phys. Lett. 1980, 73, 315.

(17) Chupka, W. A. Photoionization and fragmentation of polyatomic molecules. In *Chemical Spectroscopy and Photochemistry in the Vacuum-Ultraviolet*; Sandorfy, C., Ausloos, P. J., Robin, M. B., Eds.; D. Reidel: New York, 1973.

(18) Eland, J. H. D. Ion Fragmentation Mechanisms and Photoelectron Spectroscopy. *Electron Spectroscopy: Theory, Techniques and Applications*; Brundle, C. R., Baker, A. D., Eds.; Academic: New York, 1979; Vol. 3, Chapter 5.

(19) Slanger, T. G.; Black, G. J. Chem. Phys. 1978, 68, 1844.

(20) Zhu, Y. F.; Gordon, R. G. J. Chem. Phys. 1990, 92, 2897.

(21) Miller, R. L.; Kable, S. H. Houston, P. L.; Burak, I. J. Chem. Phys. **1992**, *96*, 332.